Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
International Journal of Applied Earth Observation and Geoinformation ; 121:103376, 2023.
Artículo en Inglés | ScienceDirect | ID: covidwho-20231021

RESUMEN

Infectious disease spreading is a spatial interaction process. Assessing community vulnerability to infectious diseases thus requires not only information on local demographic and built environmental conditions, but also insights into human activity interactions with neighboring areas that can lead to the transition of vulnerability from locations to locations. This study presented an analytical framework based on the Particle Swarm Optimization model to estimate the weights of the factors for vulnerability modeling, and a local proportional parameter for use in the integration of the local and neighboring area risks. A country model and five cross-region validation models were developed for the case study of Singapore to assess the vulnerability to COVID-19. The results showed that the identified weights for the factors were robust throughout the optimization process and across various models. The local proportional parameter could be set slightly higher in between 0.6 and 0.8 (out of 1), signifying that the local effect was higher than the neighboring effect. Computation of the weights from the optimal solutions for the integrated vulnerability index showed that the factors of human activity intensity and accessibility to amenities had much higher weights, at 0.5 and 0.3, respectively. Conversely, the weights of population density, elderly population, social economic status and land use diversity were much lower. These findings underscored the importance of considering non-equal weights for factors and incorporating spatial interactions between local and neighboring areas for vulnerability modeling, to provide to a more comprehensive assessment of vulnerability to infectious diseases.

2.
Sci Rep ; 12(1): 9758, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1890257

RESUMEN

Geographical weighted regression (GWR) can be used to explore the COVID-19 transmission pattern between cases. This study aimed to explore the influence from environmental and urbanisation factors, and the spatial relationship between epidemiologically-linked, unlinked and imported cases during the early phase of the epidemic in Singapore. Spatial relationships were evaluated with GWR modelling. Community COVID-19 cases with residential location reported from 21st January 2020 till 17th March 2020 were considered for analyses. Temperature, relative humidity, population density and urbanisation are the variables used as exploratory variables for analysis. ArcGIS was used to process the data and perform geospatial analyses. During the early phase of COVID-19 epidemic in Singapore, significant but weak correlation of temperature with COVID-19 incidence (significance 0.5-1.5) was observed in several sub-zones of Singapore. Correlations between humidity and incidence could not be established. Across sub-zones, high residential population density and high levels of urbanisation were associated with COVID-19 incidence. The incidence of COVID-19 case types (linked, unlinked and imported) within sub-zones varied differently, especially those in the western and north-eastern regions of Singapore. Areas with both high residential population density and high levels of urbanisation are potential risk factors for COVID-19 transmission. These findings provide further insights for directing appropriate resources to enhance infection prevention and control strategies to contain COVID-19 transmission.


Asunto(s)
COVID-19 , Epidemias , COVID-19/epidemiología , Humanos , Densidad de Población , Singapur/epidemiología , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA